Preview

Общая реаниматология

Расширенный поиск

Механизмы вторичного повреждения нейронов при тяжелой черепно-мозговой травме (часть 1)

https://doi.org/10.15360/1813-9779-2011-4-56

Аннотация

Обзор посвящен механизмам вторичного гипоксически-ишемического повреждения головного мозга при тяжелой черепно-мозговой травме. Приводятся новые данные по механизмам глутамат-кальциевого повреждения нейронов и ок-сидантного стресса. Ключевые слова: центральная нервная система, черепно-мозговая травма, гипоксия, ишемия, глутамат-кальциевый каскад, оксидантный стресс.

Список литературы

1. Siesjo B. K.

2. Balestreri M., Czosnyka M., Steiner L. A. et al.Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir. (Wien) 2004; 146 (2): 131 — 141.

3. Engel D. C., Mies G., Terpolilli N. A. et al.Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol. J. Neurotrauma 2008; 25 (7): 739—75

4. Park E., Bell J. D., Siddiq I. P., Baker A. J.An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J. Cereb. Blood Flow Metab. 2009; 29 (3): 575—58

5. Armstead W. M., Kiessling J. W., Kofke W. A, Vavilala M. S.SNP improves cerebral hemodynamics during normotension but fails to prevent sex dependent impaired cerebral autoregulation during hypotension after brain injury. Brain Res. 2010; 1330: 142—150.

6. Lo E. H.A new penumbra: transitioning from injury into repair after stroke. Nat. Med. 2009; 14 (5): 497—500.

7. Candelario-Jalil E.Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Cur. Opin. Investig. Drugs 2009; 10 (7): 644—654.

8. Greve M. W., Zink B. J.Pathophysiology of traumatic brain injury. Mt. Sinai J. Med. 2009; 76 (2): 97—104.

9. Wang Q., van Hoecke M., Tang X. N. et al.Pyruvate protects against experimental stroke via an anti-inflammatory mechanism. Neurobiol. Dis. 2009; 36 (1): 223—231.

10. Scafidi S., O ‘Brien J, Hopkins I. et al.Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J. Neurochem. 2009; 109 (Suppl 1): 189—197.

11. Summy-LongJ.Y., Hu S.Peripheral osmotic stimulation inhibits the brain’s innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 297 (5): R1532—R1545.

12. Gibbs M. E., Hertz L.Inhibition of astrocytic energy metabolism by D-lac-tate exposure impairs memory. Neurochem. Int. 2008; 52 (6): 1012—1018.

13. Mangia S., Simpson I. A., Vannucci S. J., Carruthers A.Thein vivoneu-ron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J. Neurochem. 2009; 109 (Suppl 1): 55—62.

14. Yamagata K., Tagami M., Yamori Y.Nitric oxide reduces astrocytic lac-tate production and induces neuronal vulnerability in stroke-prone spontaneously hypertensive rats. Glia 2008; 56 (4): 387—393.

15. Lewerenz J., Dargusch R., Maher P.Lactacidosis modulates glu-tathione metabolism and oxidative glutamate toxicity. J. Neurochem. 2010; 113 (2): 502—514.

16. Li Y., Li Q., Wang Z. et al.15-HETE suppresses K (+) channel activity and inhibits apoptosis in pulmonary artery smooth muscle cells. Apoptosis 2009; 14 (1): 42—51.

17. Кармен Н. Б.К механизму нейропротекторного действия клониди-на. Анестезиология и реаниматология 2005; 3: 53—57.

18. Siesjo B. K., Siesjo P.Mechanisms of secondary brain injury. Eur. J. Anaesthesiol. 1996; 13 (3): 247—268.

19. Маевский Е. И., Розенфельд А. С., Гришина Е. В., Кондрашова М. Н.Коррекция метаболического ацидоза путем поддержания функций митохондрий. Пущино; 2001.

20. Иванов К. П., Мельникова Н. Н.Роль лейкоцитов в микрососудах мозга в норме и ее нарушения при гипоксии. Гематология и транс-фузиология 2003; 48 (3): 21—27.

21. Lao F., Chen L., Li W. et al.Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano 2009; 3 (11): 3358—3368.

22. Ghosh S., Kaushik D. K., Gomes J.еЬal.Changes in cytosolic Ca2+ levels correspond to fluctuations of lactate levels in crosstalk of astrocyte-neuron cell lines. Indian J. Exp. Biol. 2010; 48 (6): 529—537.

23. Rothman S. M., Olney J. W.Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 1986; 19 (2): 105—111.

24. Capela J.P., Carmo H., Remiao F. et al.Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol. Neurobiol. 2009; 39 (3): 210—271.

25. Pivovarova N. B., Hongpaisan J., Andrews S. B., Friel D. D.Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J. Neurosci. 1999; 19 (15): 6372—6384.

26. Orrenius S., Zhivotovsky B., Nicotera P.Regulation of cell death: the cal-cium-apoptosis link. Nat. Rev. Mol. Cell Biol. 2005; 4 (7): 552—565.

27. Zablocka B., Domanka-Janik K.Enhancement of 3[H] D-aspartate release during ischemia like conditions in rat hippocampal slices: source of excitatory amino acids. Acta Neurobiol. Exp. (Wars.) 1996; 56 (1); 63—70.

28. ГусевЕ. И., СкворцоваВ. И.Ишемия головного мозга. М.: Медицина; 2001.

29. Monnerie H., Hsu F. C., Coulter D. A., Le Roux P. D.Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in gluta-mate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro. Neuroscience 2010; 171 (4): 1075—1090.

30. Blackburn D., Sargsyan S., Monk P. N., Shaw P. J.Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 2009; 57 (12): 1251—1264.

31. Hur J, Lee P., Kim M.J. et al.Ischemia-activated microglia induces neu-ronal injury via activation of gp91phox NADPH oxidase. Biochem. Biophys. Res. Commun. 2010; 391 (3): 1526—1530.

32. Barros L. F., Deitmer J. W.Glucose and lactate supply to the synapse. Brain Res. Rev. 2010: 63 (1—2): 149—159.

33. Dinuzzo M., Mangia S., Maraviglia B., Giove F.Changes in glucose uptake rather than lactate shuttle take center stage in subserving neu-roenergetics: evidence from mathematical modeling. J. Cereb. Blood Flow Metab. 2010; 30 (3): 586—602.

34. Halim N. D., Mcfate T., Mohyeldin A. et al.Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 2010; 58 (10): 1168—1176.

35. Nakashima K., Todd M. M.Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. Anesthesiology 1996; 85 (1): 161—168.

36. MacDonald J. W., Bhattacharyya T., Sensi S. L. et al.Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J. Neurosci. 1998; 18 (16): 6290—6299.

37. Pertusa M., Garcia-Matas S., Rodriguez-Farri E. et al.Astrocytes agedin vitroshow a decreased neuroprotective capacity. J. Neurochem. 2007; 101 (3): 794—805.

38. WillmoreL.J., Ueda Y.Posttraumatic epilepsy: hemorrhage, free radicals and the molecular regulation of glutamate. Neurochem. Res. 2009; 34 (4): 688—697.

39. Brahma M. K., Dohare P., Varma S. et al.The neuronal apoptotic death in global cerebral ischemia in gerbil: important role for sodium channel modulator. J. Neurosci. Res. 2009; 87 (6): 1400—1411.

40. Петров В. И., Пиотровский Л. Б., Григорьев И. А.Возбуждающие аминокислоты (нейрохимия, фармакология и терапевтический потенциал ВАКергических средств). Волгоград; 1997.

41. Heja L., Barabas P., Nyitrai G. et al.Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PloS. One 2009; 4 (9): e7153.

42. Hardingham G. E.Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 2009; 37 (Pt 6): 1147—1160.

43. Matute C.Calcium dyshomeostasis in white matter pathology. Cell Calcium. 2010; 47 (2): 150—157.

44. Su W., Song X., Ji J. J.Functional expression of a large-conductance Ca2+-activated K+channel in mouse substantia nigra pars compacta dopaminergic neurons. Neurosci. Lett. 2010; 471 (1): 1—5.

45. Chinopoulos C., Connor J. A., Shuttleworth C. W.Emergence of a sper-mine-sensitive, non-inactivating conductance in mature hippocampal CA1 pyramidal neurons upon reduction of extracellular Ca2+: dependence on intracellular Mg2+ and ATP. Neurochem. Int. 2007; 50 (1): 148—158.

46. Bano D., Munarriz E., Chen H. L. et al.The plasma membrane Na+/Ca2+ exchanger is cleaved by distinct protease families in neuronal cell death. Ann. N.-Y. Acad. Sci. 2007; 1099: 451—455.

47. Brustovetsky T., Bolshakov A., Brustovetsky N.Calpain activation and Na (+)/Ca (2+) exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. J. Neurosci. Res. 2010; 88 (6): 1317—1328.

48. Linde R., Laursen H., Hansen A. J.Is calcium accumulation post-injury an indicator of cell damage. Acta Neurochir. Suppl. 1996; 66: 15—20.

49. Ralay Ranaivo H., Wainwright M. S.Albumin activates astrocytes and microglia through mitogen-activated protein kinase pathways. Brain Res. 2010; 1313: 222—231.

50. Yao H., Shu Y., Wang J. et al.Factors influencing cell fate in the infarct rim. J. Neurochem. 2007; 100 (5): 1224—1233.

51. Tekkok S. B., Ye Z., Ransom B. R.Excitotoxic mechanisms of ischemic injury in myelinated white matter. J. Cereb. Blood Flow Metab. 2007; 27 (9): 1540—1552.

52. Phillips J. M., Nicholson C.Anion permeability in spreading depression investigated with ion-sensitive microelectrodes. Brain Res. 1979; 173 (3): 567—571.

53. Branston N. M., Strong A. J., Symon L.Extracellular potassium activity, evoked potential and tissue blood flow. Relationships during progressive ischaemia in baboon cerebral cortex. J. Neurol. Sci. 1977; 32 (3): 305—321.

54. Bures J., Buresova O., Krivanek J.The mechanism and applications of Leao’s spreading depression of electroencephalographic activity. New York: Academic; 1974.

55. Nedergaard M., Hansen A. J.Characterization of cortical depolarizations evoked in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 1993; 13 (4): 568—574.

56. Back T., Kohno K., Hossmann K. A.Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. J. Cereb. Blood Flow Metab. 1994; 14 (1): 12—19.

57. Mies G., Ishimaru S., Xie Y. et al.Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J. Cereb. Blood Flow Metab. 1991; 11 (5): 753—761.

58. Sukhotinsky I., Yaseen M. A., Sakadzio S. et al.Perfusion pressure-dependent recovery of cortical spreading depression is independent of tissue oxygenation over a wide physiologic range. J. Cereb. Blood Flow Metab. 2010; 30 (6): 1168—1177.

59. Spiotta A. M., Stiefel M. F., Gracias V. H. et al.Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J. Neurosurg. 2010; 113 (3): 571—580.

60. Dietrich W. D., Feng Z. C., Leistra H. et al.Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J. Cereb. Blood Flow Metab. 1994; 14 (1): 20—28.


Рецензия

Для цитирования:


Кармен Н.Б., Мороз В.В., Маевский Е.И. Механизмы вторичного повреждения нейронов при тяжелой черепно-мозговой травме (часть 1) . Общая реаниматология. 2011;7(4):56. https://doi.org/10.15360/1813-9779-2011-4-56

For citation:


Karmen N.B., Moroz V.V., Mayevsky E.I. Mechanisms of Secondary Neuronal Damage in Severe Brain Injury (Part 1) . General Reanimatology. 2011;7(4):56. (In Russ.) https://doi.org/10.15360/1813-9779-2011-4-56

Просмотров: 1289


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-9779 (Print)
ISSN 2411-7110 (Online)